Extensions 1→N→G→Q→1 with N=C3×C21 and Q=C22

Direct product G=N×Q with N=C3×C21 and Q=C22
dρLabelID
C6×C42252C6xC42252,46

Semidirect products G=N:Q with N=C3×C21 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C3×C21)⋊1C22 = C3×S3×D7φ: C22/C1C22 ⊆ Aut C3×C21424(C3xC21):1C2^2252,33
(C3×C21)⋊2C22 = D7×C3⋊S3φ: C22/C1C22 ⊆ Aut C3×C2163(C3xC21):2C2^2252,34
(C3×C21)⋊3C22 = S3×D21φ: C22/C1C22 ⊆ Aut C3×C21424+(C3xC21):3C2^2252,36
(C3×C21)⋊4C22 = D21⋊S3φ: C22/C1C22 ⊆ Aut C3×C21424(C3xC21):4C2^2252,37
(C3×C21)⋊5C22 = S32×C7φ: C22/C1C22 ⊆ Aut C3×C21424(C3xC21):5C2^2252,35
(C3×C21)⋊6C22 = C2×C3⋊D21φ: C22/C2C2 ⊆ Aut C3×C21126(C3xC21):6C2^2252,45
(C3×C21)⋊7C22 = C6×D21φ: C22/C2C2 ⊆ Aut C3×C21842(C3xC21):7C2^2252,43
(C3×C21)⋊8C22 = D7×C3×C6φ: C22/C2C2 ⊆ Aut C3×C21126(C3xC21):8C2^2252,41
(C3×C21)⋊9C22 = S3×C42φ: C22/C2C2 ⊆ Aut C3×C21842(C3xC21):9C2^2252,42
(C3×C21)⋊10C22 = C14×C3⋊S3φ: C22/C2C2 ⊆ Aut C3×C21126(C3xC21):10C2^2252,44


׿
×
𝔽